35Cl NQR Spectra of SnCl₄ Complexes with Methylaryl Ethers*

Igor M. Lazarev, Gennadii V. Dolgushin, Valentin P. Feshin, and Michail G. Voronkov Institute of Organic Chemistry, Siberian Division of the USSR Academy of Sciences, Irkutsk, USSR

Z. Naturforsch. 41 a, 211-214 (1986); revised version received October 1, 1985

 $SnCl_4$ Complexes with methylaryl ethers and their ^{35}Cl NQR spectra have been obtained. All these complexes, except $SnCl_4 \cdot 1,2 \cdot (CH_3O)_2C_6H_4$, have a trigonal-bipyramidal structure. The latter compound has an essentially distorted octahedral structure. One of the ligand oxygen atoms takes part in the formation of the $SnCl_4$ complex with 1,3-, 1,4- $(CH_3O)_2C_6H_4$ and RNO_2 . These complexes have a trigonal-bipyramidal structure too.

Introduction

Usually complexes of SnCl₄ with organic ligands are octahedral with a hexacoordinated tin atom (see, for example [1-3]). Many complexes of SnCl₄ with chloroanhydrides of substituted benzoic acids, having a trigonal-bipyramidal structure, have been described by us previously [4]. They are formed by the interaction of the tin atom with the carbonyl oxygen of the ligand. For compounds with pentacoordinated Ge, Sn, P etc. atoms, a typical splittings in the low frequency region of their 35Cl NQR spectra is observed, arising from the chlorine atoms of the acceptor: the axial chlorine line (or group of lines) is essentially lower in frequency than the equatorial ones. The NQR frequencies of the latter are close to that for SnCl₄ [5]. All the lines of the acceptor chlorine atoms in the 35Cl NQR spectra of SnCl₄·2L complexes with an octahedral structure are in the low frequency region as compared with SnCl₄ and have a different pattern of splitting (see, for example [4-7]) compared to that in the ^{35}Cl NQR spectra of the trigonal-bipyramidal complexes. These distinctions permit us to establish reliably the structure of SnCl₄ complexes. We therefore use ³⁵Cl NQR technique for further investigation of SnCl₄ complexing with organic ligands.

Reprint requests to Prof. Valentin P. Feshin, Institute of Organic Chemistry, Siberian Division of the USSR Academy of Sciences, Irkutsk, USSR.

Experimental

The complexes studied have been obtained by mixing (1:1, 1:2 or 2:1) of SnCl₄ with the corresponding ethers in the NQR tube. The NQR spectra at 77 K have been obtained by a pulsed IS-3 NQR spectrometer produced by SKB IRE AN SSSR.

Results and Discussion

The 1:1 mixtures (or, in a few cases, other component ratios) of SnCl₄ with methylaryl ethers and their ³⁵Cl NQR spectra are presented in Tables 1 and 2.

The quadruplet NQR spectrum of the 1:1 mixture of SnCl₄ with anisole indicates the formation of a trigonal-bipyramidal complex. One of the lines in this spectrum is lower (by approximately 3.2 MHz) than the three others. The latter ones split slightly. They belong to the three equatorial chlorine atoms, and the low frequency line belongs to the axial one. The same relation of the NQR frequencies for the axial and equatorial chlorine atoms is observed in the NQR spectra of chlorine-containing compounds of pentacoordinated Ge [8], Sn [4, 8] and P [9] atoms. The ³⁵Cl NQR spectrum of the 1:2 mixture of SnCl₄ with C₆H₅OCH₃ consists of 8 components (Table 2). Two lines in this spectrum have much lower frequencies than the rest. This spectrum corresponds to the trigonal-bipyramidal SnCl₄. C₆H₅OCH₃ complex with 2 molecules in the unit cell. Thus, the 1:1 and 1:2 mixtures of SnCl₄ with C₆H₅OCH₃ give complexes of the same structure.

The mixtures of $SnCl_4$ with $4-CH_3C_6H_4OCH_3$ and $3-(CH_3)_3SiC_6H_4OCH_3$ (Table 1) have the same spec-

0340-4811 / 86 / 0100-0211 \$ 01.30/0. – Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

^{*} Presented at the VIIIth International Symposium on Nuclear Quadrupole Resonance Spectroscopy, Darmstadt, July 22-26, 1985.

Table 1. The ³⁵Cl NQR spectra of SnCl₄ · L* complexes at 77 K.

No.	Ligand	v, MHz	S/N	No.	Ligand	v, MHz	S/N
1	C ₆ H ₅ OCH ₃	23.851 23.656 23.391 20.182	23 28 28 24	8	4-ClC ₆ H ₄ OCH ₃	35.597 24.386 23.564 23.198	11 8 8 7
2	2-CH ₃ C ₆ H ₄ OCH ₃	24.109 23.210 23.084 20.243	23 21 20 15	9	1,2-(CH ₃ O) ₂ C ₆ H ₄	20.252 21.131 19.923 19.692	12 8 20 8
3	3-CH ₃ C ₆ H ₄ OCH ₃	24.507 23.586 23.384 20.031	4 3 3 4	10	1,3-(CH ₃ O) ₂ C ₆ H ₄	24.435 23.704 23.096 20.052	23 28 29 20
4	4-CH ₃ C ₆ H ₄ OCH ₃	23.851 23.568 23.331 20.147	16 16 20 20	11	1,4-(CH ₃ O) ₂ C ₆ H ₄	24.183 23.890 23.825 23.636	8 9 8 7
5	2-FC ₆ H ₄ OCH ₃	24.541 23.577 20.195	10 15 8			23.463 23.303 20.215	9 8 9
6	$2-NO_2C_6H_4OCH_3$	23.924 23.483 22.886 20.101	4 4 5 6	12	$C_6H_5NO_2$	19.881 24.093 23.960 23.866	9 15 16 14
7	3-(CH ₃) ₃ SiC ₆ H ₄ OCH ₃	23.618 23.286 23.059 20.421	23 24 24 18			23.336 23.218 23.158 20.947 20.835	35 35 35 24 14

^{*} The 35 Cl NQR spectrum of SnCl₄ consists of 4 lines with equal intensities: 24.294; 24.226; 24.140 and 23.719 MHz [4, 5].

Table 2. The 35 Cl NQR spectra of $SnCl_4 + L$ mixtures at 77 K.

No.	$SnCl_4 + L$	v, MHz (S/N)	
1	$SnCl_4 + 2-(C_6H_5OCH_3)$	24.556 (3) 23.869 (6) 23.666 (5) 23.573 (4)	23.356 (4) 23.290 (5) 20.312 (9) 20.203 (7)
2	SnCl ₄ + 2-(4-ClC ₆ H ₄ OCH ₃)	35.604 (12) 34.768 (7) 24.386 (8)	23.563 (8) 23.200 (7) 20.257 (7)
3	2 SnCl ₄ + 1,4-(CH ₃ O) ₂ C ₆ H ₄	24.186 (20) 23.896 (20) 23.824 (14) 23.636 (12)	23.464 (15) 23.303 (16) 20.212 (9) 19.896 (8)
4	3 SnCl ₄ + 1,4-(CH ₃ O) ₂ C ₆ H ₄	24.295 (14) 24.196 (19) 24.135 (12) 23.889 (14) 23.825 (12)	23.636 (10) 23.463 (13) 23.303 (14) 20.212 (11) 19.896 (9) 716 (12)
5	2 SnCl ₄ + 1,3-(CH ₃ O) ₂ C ₆ H ₄	24.430 (5) 24.291 (9) 24.221 (9)	23.705 (15) 23.091 (5) 20.056 (5) 126 (8)

tra as the $SnCl_4 \cdot C_6H_5OCH_3$ (1:1) complex. Consequently, they have the same structure.

SnCl₄ with 2-CH₃C₆H₄OCH₃, 3-CH₃C₆H₄OCH₃, 2-NO₂C₆H₄OCH₃, 4-ClC₆H₄OCH₃, and 1,3-(CH₃O)₂C₆H₄ forms complexes with more distorted trigonal-bipyramidal structures than in the previous cases. Their NQR spectra (Table 1) show a larger splitting of the lines (up to \sim 1 MHz) corresponding to the equatorial chlorine atoms, indicating some nonequivalent electron distribution in these atoms.

The high frequency line in the triplet NQR spectrum of the SnCl₄ complex with 2-FC₆H₄OCH₃ (Table 1) is approximately twice as intense as the other one. The third line is considerably shifted to low frequency. This spectrum corresponds to an SnCl₄·2-FC₆H₄OCH₃ complex with a trigonal-bipyramidal structure. Two equatorial chlorine atoms have an identical electronic distribution, noticeably different from that for the third equatorial chlorine atom. The two high frequency lines in the spectrum

belong to the former. The low frequency line corresponds to the axial chlorine atom.

A line almost coincident in frequency with that of pure 4-ClC₆H₄OCH₃ (34.753 MHz) is observed in the NQR spectrum of the 1:2 mixture of SnCl₄ with 4-ClC₆H₄OCH₃ (Table 2) together with lines almost identical in frequency to those found in the 1:1 mixture (Table 1), demonstrating the formation of a single complex with a trigonal-bipyramidal structure in both cases.

It might be thought that both oxygen atoms of the corresponding ligands should participate in the formation of SnCl₄ complexes with 1,2-, 1,3-, and 1,4-(CH₃O)₂C₆H₄. However, according to the NQR spectra, this occurs only in the former case. The three lines in the NQR spectrum of the SnCl₄ · 1,2-(CH₃O)₂C₆H₄ complex are at a considerably lower frequency than in SnCl₄ (Table 1). The higher frequency line in the spectrum of this mixture is noticeably removed from the two low frequency ones, and the intensity of one of the latter is less than that of the other. This spectrum does not agree with the trigonal-bipyramidal structure of the complex. Obviously, this complex has a distorted octahedral structure.

The $1,3-(CH_3O)_2C_6H_4 \cdot SnCl_4$ complex has a trigonal-bipyramidal structure (see above). Hence, one ligand oxygen atom participates in its formation. The spectrum of the 2:1 SnCl₄·1,3-(CH₃O)₂C₆H₄ mixture (with an excess of SnCl₄) consists of both lines from the complex and lines close to those found in the SnCl₄ spectrum (Table 2).

The frequencies in the ^{35}Cl NQR spectra of $\text{SnCl}_4 \cdot 1,4\text{-}(\text{CH}_3\text{O})_2\text{C}_6\text{H}_4$ 1:1 and 2:1 mixtures coincide, only their relative intensities differ. But the NQR spectrum of the 3:1 mixture contains lines for SnCl_4 with lines corresponding to the $\text{SnCl}_4 \cdot 1,4\text{-}(\text{CH}_3\text{O})_2\text{C}_6\text{H}_4$ complex (Tables 1 and 2). The NQR spectra of all these mixtures indicate the formation of a complex with a trigonal-bipyramidal structure, with two nonequivalent molecules in the unit cell. Consequently, only one oxygen atom of 1,4- $(\text{CH}_3\text{O})_2\text{C}_6\text{H}_4$ takes part in the interaction with SnCl_4 in this case too.

The ³⁵Cl NQR spectra of all the trigonal-bipyramidal complexes examined are almost in the same frequency region. The NQR frequency of their axial chlorine atom changes insignificantly with variation of substituents and their position in the aromatic ring (19.9–20.5 MHz). In contrast, the R substituent influences essentially the electron density of the axial chlorine atom in SnCl₄·RC₆H₄COCl complexes also having the trigonal-bipyramidal structure [4]. The variation in the NQR frequencies of the equatorial chlorine atoms of the complexes studied is greater than that of the axial ones (Table 1); however, the substituents in the aromatic ring of the methylaryl ethers have only a weak influence on this variation.

It is claimed [5] that a cis-octahedral complex is formed by interaction of SnCl₄ with C₆H₅NO₂. Both oxygen atoms take part in its formation. The NQR spectrum of this complex consists of 8 lines with different intensities, some of which belong to SnCl₄ [5]. The NQR spectrum of this complex as obtained by us differs only in the line intensities (Table 1). This difference is obviously due to the nonidentical conditions of sample crystallization. The NQR spectrum of this complex contains a low frequency doublet and a high frequency sextet. The doublet frequency is slightly higher than that for the axial chlorine atoms in SnCl₄ complexes with methylaryl ethers (Table 1). The high frequency lines of SnCl₄ · C₆H₅NO₂ complex are in the same region as the NQR frequencies of the equatorial chlorine atoms in SnCl₄ · ArOCH₃ complexes (Table 1). This gives rise to the conclusion that the SnCl₄. C₆H₅NO₂ complex has not a cis-octahedral structure but a trigonal-bipyramidal one. There are two (when the low frequency doublet intensities are equal) or three (when their intensity ratio is 1:2) SnCl₄·C₆H₅NO₂ molecules in the unit cell (Table 1). Obviously, the SnCl₄ · CH₃NO₂ complex whose spectrum is also published in [5] has a trigonalbipyramidal structure. This spectrum is identical with NQR spectra of SnCl₄ complexes with C₆H₅OCH₃, 2-NO₂-C₆H₄OCH₃, 4-CH₃C₆H₄OCH₃ etc. (Table 1) which have the trigonal-bipyramidal structure. Apparently, one oxygen atom of the nitro group takes part in an interaction with the acceptor in SnCl₄ · RNO₂ complexes. This is confirmed by an X-ray structure analysis of the TiCl₄ · CH₃NO₂ complex [10].

According to the NQR spectra, complexes are not formed when SnCl₄ is mixed with 2-ClC₆H₄OCH₃, 3,5-Cl₂C₆H₃OCH₃, 3- and 4-BrC₆H₄OCH₃, 2-Br-4-ClC₆H₃OCH₃, 1,3-(CH₃O)₂-4-Br-C₆H₃, 4-IC₆H₄-OCH₃, and methyl and ethyl ethers of β -naphthole. The ³⁵Cl NQR frequencies of these mixtures differ only slightly from those of the individual components.

- [1] L. Guibe and J. Jugie, in: Molecular Interactions. Ed. H. Ratajczak, W. J. Orville-Thomas, Vol. 2, p. 343, John Wiley and Sons Ltd., Chichester, New York
- [2] J. L. Janier-Dubry, Ann. Scien. Univ. Besançon, Chim. 3, N 13, 29 (1976).
- [3] E. N. Gur'yanova, I. P. Gol'dshtein, and I. P. Romm, Donorno-akzeptornaya svyaz, Khimiya, Moskva 1973, p. 397.
- [4] G. V. Dolgushin, I. M. Lazarev, V. P. Feshin, and M. G. Voronkov, Dokl. Akad. Nauk SSSR 265, 1416 (1982).
- [5] E. A. Kravchenko, Yu. K. Maksyutin, E. N. Gur'yanova, and G. K. Semin, Izv. Akad. Nauk SSSR, Ser. Khim. 1968, 1271.

- [6] P. G. Hugget, R. J. Lynch, T. C. Waddington, and K. Wade, J. Chem. Soc. Dalton Trans. 1980, 1164.
- [7] J. Rupp-Besadon and E. A. C. Lucken, J. Chem. Soc. Dalton Trans. 1983, 495.
- [8] V. P. Feshin, P. A. Nikitin, M. G. Voronkov, T. K. Gar, N. A. Victorov, S. N. Gurkova, A. I. Gusev, and
- Gar, N. A. Victorov, S. N. Gurkova, A. I. Gusev, and V. I. Shiryaev, Zh. Obshch. Khim. 54, 646 (1984).
 [9] V. P. Feshin, G. V. Dolgus'iin, M. G. Voronkov, B. V. Timochin, V. K. Dmitriev, V. I. Dmitriev, V. N. Vengel'nikova, Yu. E. Sapozhnikov, and Ya. B. Yasman, Dokl. Akad. Nauk SSSR 261, 436 (1981).
 [10] M. Pagar, G. Lennin, G. Pocchicoini, Deltchett, and
- [10] M. Boyer, G. Jeannin, C. Rocchiccioli-Deltchett, and R. Thouvenot, J. Coord. Chem. 7, 219 (1978).